

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

Phone: 412-268-5800

Toll-free: 1-888-201-4479

www.sei.cmu.edu

Toll-free: 1-888-201-4479

Evaluating Software’s Impact on
System and System of Systems
Reliability

As will be shown in this paper, there is a fair amount of uncertainty

among system engineers about how to determine the impact of soft-

ware on overall system reliability, and this uncertainty is especially

clear when attempting to evaluate the impact of software on system of

systems (SoS) reliability. This paper discusses the uncertainty that is

evident today, based on presentations given at a reliability, availability,

maintainability, and testability (RAM-T) summit for a large system of

systems. Clearly, new approaches (or at least, better guides) are

needed to deal adequately with software aspects of system and SoS

reliability. A few suggestions are provided in this paper (the need for

giving software failures consideration when doing system-level FME-

CAs,1 the need for specifying failure definitions and scoring criteria at

the SoS level (not just at the constituent system, or platform, level),

and the need for Software Reliability Improvement Programs underta-

ken during system design), but the main point is that it is not enough

to simply formulate software reliability goals or to collect statistics on

detected defects.

Some Observations

We start with a real life example. At a RAM-T Summit for a major DoD SoS,

various contractors responsible for producing different constituents of the system

briefed their approach and findings regarding system reliability, availability, and

maintainability.2 As part of the briefing template, each contractor was asked to

discuss their approach to software reliability and its contribution to overall sys-

tem reliability goals. There were a wide variety of statements in response to this

requirement:

• One developer said: “There are no specific software reliability requirements

outlined in the … [specification] (e.g., MTBF). However, [our] RAM-T

__
1
 FMECA: Failure Mode, Effects, and Criticality Analysis.

2
 Although the meeting title implied testability was a topic, it was not discussed.

John B. Goodenough

March 2010

Present-day practice

is inadequate for

developing justified

confidence in

software’s impact on

system reliability. The

inadequacies are

especially obvious

when dealing with

systems of systems.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Evaluating Software’s Impact on System and System of Systems
Reliability

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

team understands that software reliability is important. Activities are

planned (mostly through software engineering) to ensure the … software is

as reliable as possible.” They pointed out that they were only responsible for

supplying basic computing platforms, including the operating systems

(OSs), device drivers, and various OS extensions. It appeared that most of

the software delivered would be COTS. They did not describe any process

for estimating the failure rate of such software or its possible effect on plat-

form MTBSA3 and MTBEFF.
4

Their final statement was: “SW failure rate [for the software they were re-

sponsible for] is negligible compared to the HW based on our analyses.

∴SW Rel = ≈ 1…” This was equivalent to saying that failures due to the op-

erating system (e.g., Linux) were less likely than failures due to a head

crash, for example. This may in fact have been the case, but some analysis

should have been provided to show this. Such an analysis could have been

difficult to provide since authoritative sources of failure rates for OSs or

other COTS products are not generally available. In any event, the contrac-

tor’s final assertion implied, without further justification, that any software

failures would have a negligible effect on MTBSA and MTBEFF for all ap-

plications depending on their deliveries.

In this case, the contractor apparently did not have any responsibility to re-

port on likely failure modes and failure rates for the COTS products they

were supplying so platform developers could potentially evaluate the impact

of such failures on their platform’s reliability. Furthermore, it appeared that

no team had responsibility for analyzing the potential effects of such errors

on platform MTBSA and MTBEFF; at least, no such team gave a presenta-

tion.

• A communications system developer said: “All the communication software

is currently furnished as part of [system1]. Prognostics and Diagnostics

software is part of [system2]. [We are] providing only emulator and simula-

tor software that is not hosted on-board.” In other words, since they provide

no on-board software, there is no software impact on communications sys-

tem reliability, availability, and maintainability; any software reliability

problems are problems that are the responsibility of the other system devel-

opers. While this may be a defensible contractor position, it wasn’t clear that

anyone would be responsible for taking such potential problems into account

when attempting to determine overall SoS reliability.

__
3
 Mean time between system aborts, i.e., system crashes.

4
 Mean time between essential function failures, i.e., failures that are critical to mission suc-

cess.

3 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

• Another developer said: “Software contributes to failure rate but the deter-

ministic nature of software makes it challenging to incorporate into reliabili-

ty block diagrams that have an underlying assumption that failures are prob-

abilistic (e.g. exponential distribution). Early and continuous Integration &

Test (I&T) will be used to detect bugs/defects in software code that will be

corrected as they are discovered.”

This statement reflects two unhelpful assumptions about how software be-

haves in complex systems: first, the emphasis on the deterministic nature of

software behavior, and second, the idea that software is perfectible — just

get rid of all the “bugs/defects.” We’ll explore these assumptions further lat-

er.

From the viewpoint of what system engineers know about evaluating the

impact of software on system reliability, this developer admitted that they

didn’t know how to incorporate software reliability estimates into their

normal (hardware-based) methods for estimating system reliability. The con-

tractor then made an explicit request for guidance on how to integrate soft-

ware reliability considerations into their efforts.

• One supplier noted software reliability among their “Issues and Concerns,”

saying that they needed to understand how to integrate software reliability

into their allocations and assessments.

• Another supplier noted that software is critical to achieving RAM-T re-

quirements, but they made no statements about how they are dealing with

the software risk other than to say that they “will monitor and support the

software processes, releases, testing, and verification.”

• One supplier presentation did not have a slide on software reliability. In re-

sponse to a question, the supplier said that they are using CMMI as their ap-

proach to software reliability. They planned to depend on testing and a quali-

ty process to produce software that is “reliable,” the implication being that

their central approach to producing reliable software was to find and elimi-

nate bugs. But, as we shall see, this approach is not sufficient.

• A presentation from a testing center said that they have no failure definitions

and scoring criteria at the SoS level because “there is no SoS definition of

failure.” Of course, without a definition of failure, it is impossible to even

begin to consider how to measure or improve SoS reliability.

In short, the presenters were all over the map regarding their approaches to soft-

ware reliability. One said it wasn’t their problem and the others provided no de-

finitions or provisional analyses; they just waved their hands. One supplier ad-

mitted they needed guidance on what would be an appropriate approach.

Moreover, the discussion of software reliability did not extend into the systems

reliability realm. No one had any significant or useful discussion of an approach

that would take into account the impact of software on platform reliability, avail-

4 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

ability, and maintainability, much less SoS reliability.5 The lack of software re-

liability analysis was especially significant compared with the extensive analyses

showing estimated MTBSA, MTBEFF, and Ao for the hardware system and

components.

It seems clear that with respect to platform reliability and availability,
6
 the de-

velopers needed guidance on how to assess (and improve) software’s contribu-

tion to platform reliability and availability. They needed to know to what extent

essential platform functionality is dependent on software, e.g., they needed to at

least perform a failure mode analysis that takes software into account.

A standard definition of reliability growth activities is: Reliability growth is the

improvement in a reliability parameter over a period of time due to changes in

product design or the manufacturing process. It occurs by surfacing failure

modes and implementing effective corrective actions.7 The part of the definition

referring to “product design” can be readily applied to software if we consider

software development activities that are (or could be) devoted to “surfacing fail-

ure modes” in the software design. It was clear that contractor development or-

ganizations know how to analyze their hardware designs to surface failure

modes. And once the significant failure modes have been identified, they know

how to determine the probability of failure and how to redesign the product to

reduce or eliminate the possibility of this failure mode occurring. What is lack-

ing in typical software development activities (outside of safety-critical or space-

borne applications) is an explicit activity focused on identifying possible or criti-

cal failure modes due to software and mitigations of these failure modes to re-

duce either their criticality or their likelihood.

A striking difference in software and hardware reliability engineering evident in

the contractor presentations was the explicit discussion of funding for Reliability

Improvement Programs (RIPs). In typical software development planning, no

funding (i.e., effort) is allocated to identify and reduce the impact of possible

software design defects leading to a SA or EFF. Funding is allocated to find and

remove code faults, but typically there is no software FMEA followed by design

__
5
 To the extent that there was any discussion of how to improve software reliability, it was

limited to defect prevention (good processes) and defect detection/elimination via testing.

6
 Software has an impact on system availability primarily with respect to the time it takes for

the software to recover after a system failure. Typically this is mostly reboot time, but if the sys-

tem failed in the middle of a complicated process, the operator could require even more time

before the system is able to get back to an appropriate operating point unless the software has

been designed to minimize the necessary recovery time.

7
 AMSAA Reliability Growth Guide, TR-652. See http://www.barringer1.com/nov02prb.htm

for links to sections of this guide.

Reliability

improvement

programs are not just

for hardware.

5 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

modifications to ensure that even when critical software components fail, the

likelihood of a SA or EFF is reduced.

One supplier gave a diagram showing that “99%” of the system’s software lay in

the middleware and application software layers. The supplier’s implication was

that the main software impacts on reliability and maintainability would be found

there — the RAM contribution of operating system software would be negligi-

ble. In fact, this may be a reasonable position, but if so, shouldn’t there have

been a presentation addressing the contribution to RAM-T made by middleware

and by application software? And shouldn’t someone’s presentation show to

what extent such software is sensitive to underlying infrastructure system fail-

ure?

The impact of software on RAM-T

Software reliability theories and techniques, as traditionally considered, consider

the computer itself 100% reliable and do not consider interactions between soft-

ware and non-computer hardware. This is due to a mental model that says it is

possible for software to be perfect because once a problem is found, it can be

removed and will never occur again. An alternative, more realistic, mental model

would say that software is never perfect so a system needs to be designed to re-

cover from (currently unknown) faults whose effects are encountered only rarely.

Fault tolerance techniques attempt to provide methods for detecting and recover-

ing from such failure effects.

Hardware engineers typically think that software failures are deterministic be-

cause certain inputs or uses can reliably cause a failure. But although all software

failures are deterministic in the sense that they occur every time certain condi-

tions are met, the likelihood of the conditions being met becomes, eventually, a

function of usage patterns and history, neither of which are deterministic. In ef-

fect, after egregious software faults have been removed, failure occurrences be-

come non-deterministic. In fact, certain types of software failure are inherently

non-deterministic because they depend on more knowledge of program state than

is typically available. For example, failures due to race conditions and memory

leaks typically depend on usage history and, for race conditions, subtle details of

system state. Although these are removable design deficiencies, their occurrence

appears to be random (although typically the frequency of such failures increases

as the load on the software system increases). In short, it is not unreasonable to

think of software failures as eventually mimicking hardware behavior in their

seemingly non-deterministic occurrence.
8

__
8
 Of course, we can’t push the analogy too far. There is no “bathtub curve” for software, that

is, the end of a software system’s useful life is not signaled by an increase in its failure rate.

Unhelpful

assumption: software

is perfectible.

Software failures can

be non-deterministic.

6 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

The idea of predicting and then improving the reliability of a software design

before it has been implemented is foreign to usual software development ap-

proaches. Software reliability efforts typically focus on modeling trends in de-

fects discovered in code;
9
 reliability modeling and analysis (to determine the

potential impact of certain types of software failure) is not routinely done prior

to code development. Moreover, work focused on improving the robustness
10

 of

a design, when done, is hardly ever considered a part of system reliability and

availability improvement activities even though such work improves the reliabil-

ity and availability of a system.

Reliability improvement activities in the hardware realm are focused on identify-

ing design deficiencies that are the source of an unacceptable failure rate. Relia-

bility improvement activities include the identification of failure modes and the

identification of stress points that are likely points of failure. Hardware reliability

improves as these design defects are remediated. Exactly the same process can

apply to software, although neither hardware nor software reliability engineers

usually think of it this way. For example, consider a program that uses multi-

tasking. Such programs typically share data among some of the tasks. From a

reliability viewpoint, this is a situation that should immediately signal the need

for careful design analysis based on how the engineers have decided to ensure

against race conditions for accessing and modifying the shared data. If the cho-

sen mechanism is through explicit use of semaphores, experience shows that race

conditions are highly likely; very careful analysis will be needed to gain justified

confidence that race conditions have been eliminated. Performing such an analy-

sis could be considered as part of a software RIP if one could show that the like-

lihood of failure would be reduced as a result of doing the analysis and changing

the design.

In general, certain software design approaches imply certain potential failure

modes. Reliability improvement is possible to the extent these potential failure

modes are recognized and eliminated or reduced.

The kind of modeling, simulation, and analysis that is done to identify hardware

design defects before a system is built is exactly the kind of activity that is

needed as a software reliability improvement program (SRIP). Although the ac-

tivities of software reliability assessment involve testing and tracking the occur-

rence of failures (and this is what the software reliability engineering community

is typically focused on), the failure impact and redesign analysis activities under-

__
9
 Typically code reviews and testing are used to find code defects.

10
 Robustness is here used to mean the ability of software to behave acceptably even when

subjected to unplanned usage conditions. “Behave acceptably” may mean gracefully shutting

down or reduced performance (as opposed to no performance at all).

Software RIPs are

needed.

7 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

lying software RAM improvement are less common and mature (except in safe-

ty-critical and space-borne systems, where software dependence is clearly un-

derstood to be crucial). Improving development activities devoted to analyzing

the potential impact of software failures (regardless of cause) is needed to mi-

nimize software’s impact on system SAs and EFFs in complex stand-alone sys-

tems as well as in systems of systems.

The developers of stand-alone systems already have difficulty deciding how

software affects system reliability; developing an estimate for a system of sys-

tems is even more difficult, in part because SoS failures arise from constituent

system interactions, not from the behavior of a constituent system per se. For

example, constituent systems might each, individually, deliver certain informa-

tion in a manner that satisfies their users, but the end-to-end exchange of infor-

mation across the SoS could nonetheless fail to meet a timing requirement unac-

ceptably often. Similarly, SoS mission threads require interactions among

constituent systems, so mission thread failure is one type of SoS failure. But if a

SoS function is defined in terms of a set of mission threads, how ineffective does

a mission thread have to be to be considered a failure? Finally, because the con-

stituents of a SoS have different stakeholders, not every member of a SoS will

necessarily agree on what constitutes a SoS failure, especially when mitigating

such a failure mode requires changes to a constituent system that do not provide

any particular benefits to the constituent system’s stakeholders.

In a system of systems, there may be no failure definitions and scoring criteria

other than at the system (platform) level.
11

 If the DoD expects a system of sys-

tems to accomplish its mission function, there must be some definitions of what

constitutes failure at the SoS level. Although such definitions may be hard to

develop, their absence makes it highly likely that insufficient attention will be

given to SoS failure modes.

Determining SoS failure modes is not easy today, and this makes reliability

evaluation of a SoS more complicated. Reliability evaluation depends on defin-

ing what loss of functionality constitutes a system abort (SA), essential function

__
11

 When this was pointed out at the RAM-T review, one response was that “If the platforms

meet their reliability goals, [the SoS] will work as intended.” Such a response misses the point

because a system of systems is defined by the (allowed) interactions between constituents;

understanding how these interactions can lead to undesired SoS behavior is the essence of

understanding SoS failure. For example, misinterpretation of shared data is a typical SoS failure

mode. Depending on the context, the effect of the misinterpretation might be mild or it might be

catastrophic. Such a SoS failure mode is not surfaced if one focuses just on analyzing “platform”

reliability because each system can be considered to analyze the shared data completely cor-

rectly, from each system’s point of view, and yet, the shared view can be inconsistent.

Failure definitions for

SoS are not obvious.

8 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

failure (EFF), or non-essential function failure (NEFF).12 Application software

developers need to determine the potential contribution software could make to

each defined SA and EFF, i.e., they need to perform a software-oriented

FMECA. This analysis would identify what role various software subsystems

could play in contributing to a SA or EFF. For example, a mission usage profile

analysis could indicate what proportion of mission time each critical software

subsystem is in use (with the understanding that a software subsystem is critical

if its failure would contribute to a SA or EFF). Further analysis could show what

probability of failure could be tolerated before exceeding the overall mission

reliability requirement. The next step would be to determine, both by analysis

and by actual test, how likely the software subsystems are to meet the necessary

reliability requirement. The kind of analysis we are talking about here is, to my

knowledge, not commonly done for software as part of overall system and

RAM-T analysis. This is an area in which software-reliant programs need to

change.

For each failure mode, additional analysis is needed to show what the recovery

method will be, e.g., after a software-caused failure, is a system reboot neces-

sary, can the operator fall back to a previously saved “good” state and try again,

is there an alternate method that might avoid the subsystem that isn’t working?

This kind of analysis is needed to determine the likely time to recover from a

software-caused SA or EFF. This is more difficult than for the hardware case

because diagnosis of the software fault is likely to be too time consuming to al-

low correction in the field. In addition, the potential causes of software failures

are more difficult to determine in advance for software than for hardware. In

hardware, you can use analysis to show the components that are most likely to

fail eventually under certain conditions of stress or usage, i.e., you know that

hardware eventually will fail for a particular reason; you can know the potential

faults in advance of their occurrence. Because of this, you can put diagnostic

methods in place in advance of the fault’s occurrence. Obviously this is not true

for software because software faults are more like unanticipated hardware failure

modes due to design errors.

Possible Steps Forward

The observations and analysis above suggest that software’s potential contribu-

tion to SAs and EFFs is not being adequately addressed by current activities of

teams developing large software-reliant systems and SoSs, and that even if some

software teams for constituent systems are doing an adequate job in this area, it

__
12

 These are the failure definition classes for which scoring criteria are required. The scoring

criteria define when failures are counted against these classes. For example, a failure prior to

start of a mission might not count as an EFF.

9 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

isn’t clear that their work is integrated with SoS RAM-T efforts. At the mini-

mum, given that a SoS RAM-T team has the responsibility for overall SoS relia-

bility, the SoS RAM-T team should be aware of all activities helping to ensure

that software’s contribution to SoS SAs and EFFs is within acceptable limits.

• Recommendation: A SoS RAM-T team should determine failure definitions

applicable to the system as a whole as well as SA and EFF failure definitions

applicable to constituent systems. Without a definition of SoS failure, it will

be impossible to conduct a reasonable analysis of software’s contribution to

SoS reliability and availability. These failure definitions will be easier to de-

velop if there is first an understanding of the general nature of SoS failure

modes and what makes them peculiar to systems of systems (e.g., see foot-

note 11).

• Recommendation: Given definitions of failure, a RAM-T team should help

lead an assessment of software’s contribution to potential failure modes for

constituent systems and SoS configurations of these constituents. Of course,

the RAM-T team will need a lot of assistance from the software develop-

ment team. This is a potentially big job, but without such an analysis, it will

be impossible to decide whether a SoS design is sufficiently robust against

failure modes leading to SAs and EFFs.

• Recommendation: Given an understanding of a SoS’s software-dependent

failure modes, the next step is to map mission profiles to particular software

functions to develop an understanding of which functions make the biggest

potential contribution to SAs and EFFs. This leads to an analysis of the

software design to determine whether the design appropriately mitigates

against the critical failure modes, and if not, to recommend that appropriate

changes be made.

Carrying out these recommendations on a pilot basis for some subset of functio-

nality and missions on a DoD SoS would give a good indication of the difficulty

and importance of the task.

10 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

References

Maier, M. "Architecting Principles for Systems-of-Systems." Systems

Engineering 1, no. 4 (1998): 267-284.

Acronyms

AMSAA Army Materiel Systems Analysis Activity

CMMI Capability Maturity Model Integration

COTS Commercial Off The Shelf

EFF Essential Function Failure

FMEA Failure Modes and Effects Analysis

HW hardware

I&T Integration & Test

MTBEFF Mean Time Between Essential Function Failure

MTBF Mean Time Between Failure

MTBSA Mean Time Between System Abort

OS operating system

RAM Reliability, Availability, Maintainability

RAM-T Reliability, Availability, Maintainability - Testability

RIP Reliability Improvement Program

SA System Abort

SW software

11 | EVALUATING SOFTWARE’S IMPACT ON SYSTEM AND SYSTEM OF SYSTEMS

RELIABILITY

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES

NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE

MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark

holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distri-

buted in written or electronic form without requesting formal permission. Permission is required for any

other external and/or commercial use. Requests for permission should be directed to the Software Engi-

neering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center. The Government of the United States has a royalty-free govern-

ment-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to

have or permit others to do so, for government purposes pursuant to the copyright license under the clause

at 252.227-7013.

For information about SEI reports, please visit the publications section of our website

(http://www.sei.cmu.edu/publications).

